Transition Metal Substituted Phosphanes, Arsanes and Stibanes. XLIII [I]

Thermal Treatment of Cp(OC)₃W-Substituted **Arsanes and Arsinesulfides: Inter- and Intramolecular Ligand Exchange with CO-Substitution**

MICHAEL LUKSZA, KLAUS JÖRG and WOLFGANG MALISCH*

Institut für Anorganische Chemie der Universität Würz*burg, Am Hubland, D-8700 Wiirzburg, F.R.G.*

Received January 10, 1984

Metallo-arsanes $Cp(OC)₃M-AsR₃$ (M = Mo, W; $R = Me$, t-Bu) possess a strong tendency towards coordination to metal centers, which indicate high Lewis basicity of the arsenic atom $[2, 3]$. Aggregation to four-membered ring systems by intermolecular CO-substitution on thermal or photochemical treatment, which is preferred by the methyl derivatives (eqn. la), has to be regarded as a special case of coordination reaction [2,4]. However the metallo-arsanes in which the arsenic-donor center bears th bulky t-butyl group undergo an intramolecular CO-substitution reaction leading to the formation of $\frac{1}{2}$ and $\frac{1}{2}$ is the conducted species with a metal-arsenic double $\frac{1}{2}$

A similar situation is valid for metallo-arsinesulfides $Cp(OC)₃M-AsR₂(S)$, which are formed readily through oxidative addition of elemental sulfur to the metallo-arsanes [6]. A new nucleophilic center in a $β$ -position to the metal atom is established, which can induce in principle formation of either threeor six-membered ring systems $[Cp(CO)₂M-AsR₂$ - $(S)|_{x}$ (x = 1, 2). For R = t-Bu an inorganic cyclopropane derivative has been obtained and structurally characterized [7].

We were interested in determining whether decarbonylation of metallo-arsanes or metallo-arsine sulfides, with either the less bulky isopropyl group or a combination of the tert-butyl and a methyl group as substituents would give the M=As double bond or the three membered ring species $Cp(OC)_2W-AsR_2-S$ respectively.

The metallo-di(isopropyl)arsane 1 can be synthesized in 80% yield by nucleophilic metallation of $(i-Pr)_2$ AsCl with Na[W(CO)₃Cp] in benzene or toluene. The chiral arsane β is prepared in a two-step reaction starting with t-Bu-AsCl₂ and Na[W(CO)₃-Cp] to give $Cp(OC)$ ₃W-As(t-Bu)Cl (2), which is then methylated with methyl lithium [8].

1, 3 undergo intermolecular CO-substitution on heating in toluene at 100 \degree C, leading to the formation of the four membered heterocycles 4a, *b.*

The decarbonylation reaction (2) demonstrates that even a small reduction in size of the alkyl substituents concurrently reduces kinetic stabilization of the doubly bonded $W =$ As-species A to such an extent that immediate aggregation occurs.

The 'H-spectrum of *4b* exhibits only one resonance for each of the cyclopentadienyl, tert butyl and methyl groups, indicating that only one stereoisomer exists in solution [8]. Since all known homologs of 4a, *b* [2, 4, 9, IO] adopt a structure with the two cyclopentadienyl rings *trans* to each other, and since two *tert* butyl groups on the same side of the rince two *tert* butyl groups on the same side of the unit of the same side of the sam ring would cause high steric crowding, we conclude
that the centrosymmetric isomer depicted in eqn. (3) is formed. The arsanes, I , 3 react readily with elemental sulfur in methylcyclohexan at $0^{\circ}C$ to give the corresponding arsine sulfides 5a, *b* as orange-red air stable crystals.

^{*}Author to whom correspondence should be addressed.

As(R)R $\text{Cp(OC)}_3\text{W-As(R)R}' \xrightarrow{\text{A'B-S}_8} \text{Cp(OC)}_3\text{W-As(R)R}' \xrightarrow{\text{C}_6} \text{C}_6$ $I,3$ $\frac{5a}{R}$ $\frac{5a}{iPr}$ $\frac{b}{iPr}$ $\frac{6a}{iPr}$ $\frac{6a}{iPr}$ $\frac{1}{iPr}$ $\frac{6a}{iPr}$ $\frac{1}{iPr}$ $\$ R'liPr tBu R'liPr tBu

5a, *b* are converted on refluxing in pentane (CO-elimination !) to the complexes 6a, *b,* with the thioarsinyl ligand in a side-on coordinated fashion, the latter complexes being obtained as deep red-brown crystals after low temperature crystallization. In contrast to the result of eqn. (3) for the arsanes $1, 3$, even with smaller alkyl groups there is still preference for *intra*molecular CO-substitution in the case of the arsinesulfides $5a$, *b*. Below -10° C the diastereotopic methyl groups of the isopropyl unit show the expected eight line pattern in the 'H-NMR spectrum, which collapse at -6° C to four lines, indicating rapid rotation of the R₂As(S)-ligand. The ΔG_{267}^* value for this process is calculated to be 14.0 kcal/mol [7].

Interestingly *6b* shows at room temperature one set of 'H-NMR resonances, which broaden between +15 and -10° C and which become sharp again at low temperature. This finding suggests the presence of the two diastereomers *6b, 6b'* at higher temperatures, with *6b* (having the tert-butyl group pointed away from the cyclopentadienyl-unit) predominating at lower temperature. Interconversion of *6b* and *6b'* is achieved by simple rotation of the η^2 bound thioarsinyl group.

Acknowledgement

We thank the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg and the Verband der Chemischen Industrie for generous financial support of this work. Helpful preparative assistance by J. Kron and C. Hoffman is acknowledged.

References

- *Organomet. Chem., in* press.
- W. Malisch. M. Kuhn. W. Albert and H. RGssner. *Chem. Ber., 112, 3318 (1980).*
- R. Miiller and H. Vahrenkamp, Chem. *Ber., 110,* 3910 (1977).
- P. Panster and W. Malisch, *Chem. Ber., 109, 3842 (1976).*
- M. Luksza, S. Himmel and W. Malisch, *Angew. Chem., 95, 418 (1983); Angew. Chem., Znt. Ed.* Engl., 22, 416 (1983).
- W. Malisch, R. Janta and G. Kiinzel, Z. *Naturforsch., 34b, 599 (1979).*
- W. Malisch, M. Luksza and W. S. Sheldrick, Z. *Naturforsch., 36b, 1580 (1981)*
- *I*: yellow-orange crystals; m.p. 36 °C; ¹H-NMR (C₆H₆): δ = 4.75 (s, 5H, H₅C₅), 2.43 (dsept, ³J_{HCCH} = 6.8 Hz, 2H, HCAs), 1.42 (d, ³J_{HCCH} = 11.0 Hz, 6H, H₃CCAs). 1.27 (d, $3J_{\text{HCCH}} = 11.0$ Hz, 6H, H₃CCAs).

IR (C_6H_6) : $\nu CO_8 = 1990(s)$; $\nu CO_{\text{BS}} = 1911$ (vs), 1896 (vs) .

2: yellow crystals; m.p. 99.5 °C; ¹H-NMR (C_6H_6) : δ = 4.80 (s, 5H, H₅C₅), 1.59 (s, 9H, H₃CCAs). IR (pentane): $vCO_e = 2010(s)$; $vCO_{ae} = 1951(s)$, 1923(vs). 3: Orange powder; m.p. $57-60^{\circ}$ C; ¹H-NMR (C₆H₆): δ = 4.70(s, 5H, H₅C₅), 1.50 (s, 3H, H₃CAs), 1.39 (s, 9H, H₃CCAs). IR (pentane): $vCO_s = 1999(s)$; $vCO_{as} =$ 1929 (vs), 1913 (vs).

4a: deep red powder; m.p. 164 "C; 'H-NMR (C6H6): $\delta = 5.13$ (s, 10H, H₅C₅), 2.17 (m, ³J_{HCCH} = 6.6 Hz, 4H, $HCAs$), 1.33 (d, ³J $_{HCCH}$ = 6.6 Hz, 12H, H₃CCAs), 1.27 $(d, \frac{3J}{HCCH}) = 6.6$ Hz, 12 H, H₃CCAs). IR (benzene): ν CO_s = 1919(vs); ν CO_{ns} = 1846(s).

 $4b$: brown red powder; m.p. 136 °C; ¹H-NMR (C₆H₆): δ = 4.97 (s, 10H, H₅C₅), 2.09 (s, 6H, H₃CAs, 1.58 (s, 18H, H₃CCAs). IR (pentane): $vCO_s = 1941(vs)$; $vCO_{as} =$ 1866(s).

Sa: orange red crystals; m.p. 49 °C; ¹H-NMR (C₆H₆): δ = 4.79 (s, 5H, H₅C₅), 2.22 (dsept, ³J_{HCCH} = 6.8 Hz, 2H,
HCAs), 1.38 (d, ³JHCCH = 11.0 Hz, 6H, H3CCAs), 1.27 (d, 6H, H₃CCAs). IR (benzene): $vCO_s = 2020(s)$; $vCO_{as} =$ 1936(vs), 1918(s).

5b: orange red crystals; m.p. 74-75 °C; ¹H-NMR (C₆H₆): δ = 4.89(s, 5H, H₅C₅), 1.33 (s, 3H, H₃CAs), 1.35 (s, 9H, H₃CCAs). IR (methylcyclohexane): $vCO_s = 2026(s)$; $v\bar{CO}_{as}$ = 1944(vs).

6a: deep red crystals; m.p. 77 °C; ¹H-NMR (C6H6): δ = 5.12 (s, 5H, H₅C₅), 2.35 (m, 2H, HCCH₃As), 1.11 (d, 3 J $_{\text{HCCH}}$ = 7.0 Hz, 6H, H₃CCAs), 1.08 (d, 3 J $_{\text{HCCH}}$ = 7.0 Hz, 6H, H₃CCAs). IR (benzene): $\nu CO_s = 1940$ (vs); ν CO_{as} = 1852(s).

66: red violet crystals; m.p. 110 "C (dec.); 'H-NMR $(C_6H_6): 6 = 5.15$ (s. 5H, H₅C₅), 1.53 (s. 3H, H₃CAs). 1.28 (s, 9H, H₃CCAs). IR (benzene): $vCO_s = 1941$ (vs); ν CO_{as} = 1852(s).

9 R. G. Hayter, *J. Am. Chem. Sot., 86, 823 (1964).* 10 E. Gross and W. Malisch, unpublished results.